22 research outputs found

    A single tube system for the detection of Mycobacterium tuberculosis DNA using gold nanoparticles based FRET assay

    Get PDF
    The global combat against MTB is limited by challenges in accurate affordable detection. In this study, a rapid, affordable, single tube system for detection of unamplified MTB16s rDNA was developed. Utilizing a AuNP based FRET system, this assay achieved a sensitivity and specificity of 98.6% and 90% respectively.This report was made possible by a NPRP award [NPRP 4-1215-3-317] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors

    Statistical methods and resources for biomarker discovery using metabolomics.

    Get PDF
    Metabolomics is a dynamic tool for elucidating biochemical changes in human health and disease. Metabolic profiles provide a close insight into physiological states and are highly volatile to genetic and environmental perturbations. Variation in metabolic profiles can inform mechanisms of pathology, providing potential biomarkers for diagnosis and assessment of the risk of contracting a disease. With the advancement of high-throughput technologies, large-scale metabolomics data sources have become abundant. As such, careful statistical analysis of intricate metabolomics data is essential for deriving relevant and robust results that can be deployed in real-life clinical settings. Multiple tools have been developed for both data analysis and interpretations. In this review, we survey statistical approaches and corresponding statistical tools that are available for discovery of biomarkers using metabolomics.Open Access funding provided by the Qatar National Library. This research was funded by the Qatar National Research Fund (QNRF), grant number NPRP13S-1230-190008

    Whole genome sequencing of marine organisms by Oxford Nanopore Technologies: Assessment and optimization of HMW-DNA extraction protocols

    Get PDF
    Marine habitats are Earth's largest aquatic ecosystems, yet little is known about marine organism's genomes. Molecular studies can unravel their genetics print, thus shedding light on specie's adaptation and speciation with precise authentication. However, extracting high molecular weight DNA from marine organisms and subsequent DNA library preparation for whole genome sequencing is challenging. The challenges can be explained by excessive metabolites secretion that co-precipitates with DNA and barricades their sequencing. In this work, we sought to resolve this issue by describing an optimized isolation method and comparing its performance with the most commonly reported protocols or commercial kits: SDS/phenol–chloroform method, Qiagen Genomic Tips kit, Qiagen DNeasy Plant mini kit, a modified protocol of Qiagen DNeasy Plant kit, Qiagen DNeasy Blood and Tissue kit, and Qiagen Qiamp DNA Stool mini kit. Our method proved to work significantly better for different marine species regardless of their shape, consistency, and sample preservation, improving Oxford Nanopore Technologies sequencing yield by 39 folds for Spirobranchus sp. and enabling generation of almost 10 GB data per flow cell/run for Chrysaora sp. and Palaemon sp. samples

    The Interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets

    Get PDF
    The invasive and lethal nature of Glioblastoma multiforme (GBM) necessitates the continuous identification of molecular targets and search of efficacious therapies to inhibit GBM growth. The GBM resistance to chemotherapy and radiation it is attributed to the existence of a rare fraction of cancer stem cells (CSC) that we have identified within the tumor core and in peritumor tissue of GBM. Since Notch1 pathway is a potential therapeutic target in brain cancer, earlier we highlighted that pharmacological inhibition of Notch1 signalling by γ-secretase inhibitor-X (GSI-X), reduced cell growth of some c-CSC than to their respective p-CSC, but produced negligible effects on cell cycle distribution, apoptosis and cell invasion. In the current study, we assessed the effects of Hes1-targeted shRNA, a Notch1 gene target, specifically on GBM CSC refractory to GSI-X. Depletion of Hes1 protein induces major changes in cell morphology, cell growth rate and in the invasive ability of shHes1-CSC in response to growth factor EGF. shHes1-CSC show a decrease of the stemness marker Nestin concurrently to a marked increase of neuronal marker MAP2 compared to pLKO.1-CSC. Those effects correlated with repression of EGFR protein and modulation of Stat3 phosphorylation at Y705 and S727 residues. In the last decade Stat3 has gained attention as therapeutic target in cancer but there is not yet any approved Stat3-based glioma therapy. Herein, we report that exposure to a Stat3/5 inhibitor, induced apoptosis either in shHes1-CSC or control cells. Taken together, Hes1 seems to be a favorable target but not sufficient itself to target GBM efficaciously, therefore a possible pharmacological intervention should provide for the use of anti-Stat3/5 drugs either alone or in combination regimen

    Qatar genome: Insights on genomics from the Middle East

    Get PDF
    Despite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is underrepresented in the human genome variation databases. Here we describe insights from Phase 1 of the Qatar Genome Program with whole genome sequenced 6047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons. Consistent with the high consanguinity and founder effects in the region, we found that several rare deleterious variants were more common in the Qatari population while others seem to provide protection against diseases and have shaped the genetic architecture of adaptive phenotypes. These results highlight the value of our data as a resource to advance genetic studies in the Arab and neighboring Middle Eastern populations and will significantly boost the current efforts to improve our understanding of global patterns of human variations, human history, and genetic contributions to health and diseases in diverse populations.The Qatar Genome Program (QGP) and Qatar Biobank (QBB) are both Research and Development entities within Qatar Foundation for Education, Science and Community Development. The authors are thankful for everyone who contributed to this endeavor including the QGP and QBB team members, in addition to our partners at Hamad Medical Corporation (HMC), Sidra Medicine and other national stakeholders. The authors would like to especially thank all participants in this study for their continuous support

    Gene Expression Profiling of Embryonic Human Neural Stem Cells and Dopaminergic Neurons from Adult Human Substantia Nigra

    Get PDF
    Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells

    Antimicrobials : a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Get PDF
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.Peer reviewe

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    A single tube system for the detection of Mycobacterium tuberculosis DNA using gold nanoparticles based FRET assay

    No full text
    Abstract The global combat against MTB is limited by challenges in accurate affordable detection. In this study, a rapid, affordable, single tube system for detection of unamplified MTB16s rDNA was developed. Utilizing a AuNP based FRET system, this assay achieved a sensitivity and specificity of 98.6% and 90% respectively.This report was made possible by a NPRP award [NPRP 4-1215-3- 317] from the Qatar National Research Fund (a member of The Qatar Foundation)
    corecore